Amusement Park Programming Project

Project Outcomes

Use the Java selection constructs (1 f and if else).

Use the Java iteration constructs (while, do, for).

Use Boolean variables and expressions to control iterations.
Use arrays or ArrayList for storing objects.

Proper design techniques.

GghowpdE

Project Requirements

Your job is to implement a simple amusement park information system that
keeps track of admission tickets and merchandise in the gift shop. The
information system consists of three classes including a class to model tickets, a
class to model gift shop merchandise, the amusement park, and the amusement
park tester. The gift shop supports access to specific merchandise in the park’s
gift shop and to purchase the merchandise or to order new merchandise for the
gift shop. The UML diagram for each class (except the tester class) is given
below.

1) Develop a simple class that models admission tickets. Each admission is
described by several instance fields:
a. Aticket number as a long integer to identify the unique ticket,
b. A ticket category represented as a String to store the category of the
ticket (i.e. adult, child, senior),
c. Aticket holder represented as a String to store the name of the person
who purchased the ticket,
d. A date represented as a Date to store the admission date for the ticket,
A price represented as a double to store the price of the ticket,
A purchase status represented as a boolean to indicate if the ticket has
been purchased (or is reserved).

Pl 0]

Ticket

-number : long
-category : String
-holder : String
-date : Date
-price : double

© 2014 Laureate Education, Inc. Page 1 of 5



+Ticket
+setPrice (double)
+changePurchaseStatus (boolean)

+getNumber () : long
+getCategory () : String
+getHolder () : String
+getDate () : String
+getPrice () : double

+toString () : String

(String, String, Date, double, boolean)

In addition to these fields, the class has the following constructors and
methods:

a.
b.
c.

d.
e.

A parameterized constructor that initializes the attributes of a ticket.
setPrice (double price) to change the price of a textbook.
changePurchaseStatus (boolean newStatus) to change the
purchase status of the ticket.

Accessor methods for all instance fields.

toString () to return a neatly formatted string that contains all the
information stored in the instance fields.

2) Develop a simple class that models merchandise available in the gift shop
such as t-shirts, sweatshirts, and stuffed animals. The class has several
instance fields:

a.

An ID as a long integer to identify the specific merchandise item,

b. A category as a String to store the specific type of merchandise,

c. A description as a String to store the description of the merchandise,
d.

e. An instock as a boolean to indicate if the merchandise is instock or on-

A price represented as a double to store the price of the merchandise,

order.

Valid values for category include "T-Shirt", "Sweatshirt", and "Stuffed Animal”,
as well as any additional category you choose to support. If invalid values are
entered, an error message must be printed and the category instance field
must be set to "UNKNOWN".

In addition to these attributes, the class has the following constructors and
methods:

f.

g.
h. setInstock (boolean newStatus) to change the status of the

© 2014 Laureate Education, Inc.

A parameterized constructor that initializes the attributes of a
merchandise item.
setPrice (double price) to change the price of the merchandise.

merchandise item.

Accessor methods for all instance fields.

toString () to return a neatly formatted string that contains all the
information stored in the instance fields.

Page 2 of 5



Merchandise

-id : long
-category : String
-description : String

-price : double
-inStock : boolean

+Merchandise (String, String, String, double, boolean)
+setPrice (double)
+setInstock (boolean)

+getId() : String
+getCategory () : String
+getDescription() : String
+getPrice () : double
+getInstock () : boolean
+toString() : String

3) Develop class AmusementPark that keeps track of tickets and gift shop
inventory. The AmusementPark uses two ArrayListS to store Ticket and
Merchandise objects. The AmusementPark provides several methods to
add merchandise to the gift shop and to access merchandise. The following
UML diagram describes the class, the constructor, and the methods:

AmusementPark

-tickets : ArrayList<Ticket>
-merchandise : ArraylList<Merchandise>
-name : String

+AmusementPark (String)

+getName () : String

+getTicketDates () : ArrayList<Date>
+getTickets (Date date) : int

+getTicket (long id) : Ticket
+getMerchandise () : ArrayList<Merchandise>
+getMerchandise (String category) : ArrayList<Merchandise>
+getMerchandise (long id) : Merchandise
+addTicket (Ticket)

+addMerchandise (Merchandise)
+buyMerchandise (String id)

+buyTicket (String id)

a. The class has three instance fields:
a. name, the name of the bookstore
b. tickets, an ArrayList<Ticket> storing Ticket objects

© 2014 Laureate Education, Inc. Page 3 of 5



c. merchandise, an ArrayList<Merchandise> storing
Merchandise objects

b. getName () returns the name of the bookstore.

C. getTicketDates () returns an ArrayList<Date> of all the dates
for which tickets are still available. If there are no tickets available, an
empty list is returned.

d. getTickets (Date date) returns an integer indicating the number
of tickets available for the specified date.

e. getTicket (long id) returns the Ticket that matches the
specified id. If there is no Ticket matching the givenid, null is
returned.

f. getMerchandise () returns an ArrayList<Merchandise> of all
the inventory (in-stock and ordered). This method must create a
separate copy of the ArrayList before it returns the list. If there are
no merchandise items in the AmusementPark, an empty listis
returned.

g. getMerchandise (String category) returns a list of
Merchandise objects whose category matches the specified
category. For example, if called with "T-shirt" the method returns all
Merchandise objects with the category "T-shirt" as a new list. This
method must create a new copy of an ArraylList that stores all the
matched Merchandise objects. If no items in the AmusementPark
match the given name, an empty list is returned.

h. getMerchandise (long id) returns the merchandise item that
matches the specified id. If there is no merchandise item matching the
givenid, null is returned.

i. addTicket (Ticket) adds a new Ticket to the inventory of the
AmusementPark.

j . addMerchandise (Merchandise) adds a new Merchandise to the
inventory of the AmusementPark.

k. buyMerchandise (String id) removes a Merchandise oObject
from the list of merchandise of the AmusementPark. If the id does not
match any Merchandise objectin the list, an exception is thrown.

1. buyTicket (String id) removes a Ticket object from the list of
ticket items of the AmusementPark. If the id does not match any
Ticket objectin the list, an exception is thrown.

4) Design a tester class called AmusementParkTester. The tester class has a
main () method and tests the functionality of the class AmusementPark as
follows:

a. Create AmusementPark and name it "Walden Amusement Park".
b. Create a minimum of three Ticket objects and add them to the
bookstore.

© 2014 Laureate Education, Inc. Page 4 of 5



c. Create Apparel objects, at least two of each category, and add them
to the AmusementPark.
d. Setup aloop to:

I. Display a short menu that allows a user to perform different
actions in the gift shop such as looking up tickets or
merchandise or purchasing items. Use all of the accessor
methods in the AmusementPark to access specific items. Use
the given methods to make purchases.

ii. Prompt the user for a specific action.

iii. Depending on the specific action prompt the user for additional
input such as the id of a ticket or merchandise category, etc.
You might want to use static methods in main () to handle each
menu item separately.

iv. Perform the action and display results such as the list of
merchandise that the user has requested. Use the toString ()
method to display AmusementPark items on the screen.

v. Prompt the user for continued access to the AmusementPark
or to end the program.

Your program should handle input errors gracefully. For example, if a particular
ticket is searched and not found, the program should display a message such as
"Selected ticket not found." Feel free to experiment with the tester program in
order to develop a more useful program.

Implementation Notes:

1) All accessor methods in AmusementPark must create a new ArrayList
to copy objects into the new list. This requires loops to access objects
from the corresponding instance fields and adding them to the new
ArrayList.

2) Proper error handling is essential for this project.

3) Javadoc must be used to document AmusementPark, Ticket, and
Merchandise.

Submission Requirements:

1. Your project submission should have four files for this assignment:
a. Ticket.java - The Ticket class,
b. Merchandise.java - The Merchandise class,
c. AmusementPark.java - The AmusementPark class,
d. AmusementParkTester.java - A driver program for testing your

AmusementPark class.
2. Remember to compile and run your program one last time before you
submit it

© 2014 Laureate Education, Inc. Page 5 of 5



