
© 2014 Laureate Education, Inc.      Page 1 of 5 

Amusement Park Programming Project 
 
Project Outcomes 

1. Use the Java selection constructs (if and if else). 

2. Use the Java iteration constructs (while, do, for). 

3. Use Boolean variables and expressions to control iterations. 

4. Use arrays or ArrayList for storing objects. 

5. Proper design techniques. 

Project Requirements 
 
Your job is to implement a simple amusement park information system that 
keeps track of admission tickets and merchandise in the gift shop. The 
information system consists of three classes including a class to model tickets, a 
class to model gift shop merchandise, the amusement park, and the amusement 
park tester. The gift shop supports access to specific merchandise in the park’s 
gift shop and to purchase the merchandise or to order new merchandise for the 
gift shop. The UML diagram for each class (except the tester class) is given 
below. 
 
1) Develop a simple class that models admission tickets. Each admission is 

described by several instance fields: 
a. A ticket number as a long integer to identify the unique ticket, 
b. A ticket category represented as a String to store the category of the 

ticket (i.e. adult, child, senior), 
c. A ticket holder represented as a String to store the name of the person 

who purchased the ticket, 
d. A date represented as a Date to store the admission date for the ticket, 
e. A price represented as a double to store the price of the ticket, 
f. A purchase status represented as a boolean to indicate if the ticket has 

been purchased (or is reserved). 

Ticket 

-number : long 

-category : String 

-holder : String 

-date : Date  

-price : double 

 



© 2014 Laureate Education, Inc.      Page 2 of 5 

 
In addition to these fields, the class has the following constructors and 
methods: 

a. A parameterized constructor that initializes the attributes of a ticket. 
b. setPrice(double price) to change the price of a textbook. 

c. changePurchaseStatus(boolean newStatus) to change the 

purchase status of the ticket. 
d. Accessor methods for all instance fields. 
e. toString() to return a neatly formatted string that contains all the 

information stored in the instance fields. 
 
2) Develop a simple class that models merchandise available in the gift shop 

such as t-shirts, sweatshirts, and stuffed animals. The class has several 
instance fields: 

a. An ID as a long integer to identify the specific merchandise item, 
b. A category as a String to store the specific type of merchandise, 
c. A description as a String to store the description of the merchandise, 
d. A price represented as a double to store the price of the merchandise, 
e. An instock as a boolean to indicate if the merchandise is instock or on-

order. 
 
Valid values for category include "T-Shirt", "Sweatshirt", and "Stuffed Animal", 
as well as any additional category you choose to support. If invalid values are 
entered, an error message must be printed and the category instance field 
must be set to "UNKNOWN".  
In addition to these attributes, the class has the following constructors and 
methods: 

f. A parameterized constructor that initializes the attributes of a 
merchandise item. 

g. setPrice(double price) to change the price of the merchandise. 

h. setInstock(boolean newStatus) to change the status of the 

merchandise item. 
i. Accessor methods for all instance fields. 
j. toString() to return a neatly formatted string that contains all the 

information stored in the instance fields. 
 

+Ticket (String, String, Date, double, boolean)  

+setPrice(double) 

+changePurchaseStatus(boolean) 

+getNumber() : long 

+getCategory() : String 

+getHolder() : String 

+getDate() : String 

+getPrice() : double 

+toString() : String 

 



© 2014 Laureate Education, Inc.      Page 3 of 5 

Merchandise 

-id : long 

-category : String 

-description : String 

-price : double  

-inStock : boolean  

 
+Merchandise(String, String, String, double, boolean)  

+setPrice(double) 

+setInstock(boolean) 

+getId() : String 

+getCategory() : String 

+getDescription() : String 

+getPrice() : double 

+getInstock() : boolean 

+toString() : String 

 
 
3) Develop class AmusementPark that keeps track of tickets and gift shop 

inventory. The AmusementPark uses two ArrayLists to store Ticket and 

Merchandise objects. The AmusementPark provides several methods to 

add merchandise to the gift shop and to access merchandise. The following 
UML diagram describes the class, the constructor, and the methods: 

 

AmusementPark 

-tickets : ArrayList<Ticket> 

-merchandise : ArrayList<Merchandise> 

-name : String 

+AmusementPark(String)  

+getName() : String 

+getTicketDates() : ArrayList<Date> 

+getTickets(Date date) : int 

+getTicket(long id) : Ticket 

+getMerchandise() : ArrayList<Merchandise> 

+getMerchandise(String category) : ArrayList<Merchandise> 

+getMerchandise(long id) : Merchandise 

+addTicket(Ticket) 

+addMerchandise(Merchandise) 

+buyMerchandise(String id) 

+buyTicket(String id) 

 
a. The class has three instance fields: 

a. name, the name of the bookstore 

b. tickets, an ArrayList<Ticket> storing Ticket objects 



© 2014 Laureate Education, Inc.      Page 4 of 5 

c. merchandise, an ArrayList<Merchandise> storing 

Merchandise objects 

b. getName() returns the name of the bookstore. 

c. getTicketDates() returns an ArrayList<Date> of all the dates 

for which tickets are still available. If there are no tickets available, an 
empty list is returned. 

d. getTickets (Date date) returns an integer indicating the number 

of tickets available for the specified date. 
e. getTicket(long id) returns the Ticket that matches the 

specified id. If there is no Ticket matching the given id, null is 

returned. 

f. getMerchandise()returns an ArrayList<Merchandise> of all 

the inventory (in-stock and ordered). This method must create a 
separate copy of the ArrayList before it returns the list. If there are 

no merchandise items in the AmusementPark, an empty list is 

returned. 
g. getMerchandise(String category)  returns a list of 

Merchandise objects whose category matches the specified 

category. For example, if called with "T-shirt" the method returns all 

Merchandise objects with the category "T-shirt" as a new list. This 

method must create a new copy of an ArrayList that stores all the 

matched Merchandise objects. If no items in the AmusementPark 

match the given name, an empty list is returned. 
h. getMerchandise(long id) returns the merchandise item that 

matches the specified id. If there is no merchandise item matching the 

given id, null is returned. 

i. addTicket(Ticket) adds a new Ticket to the inventory of the 

AmusementPark. 

j. addMerchandise(Merchandise) adds a new Merchandise to the 

inventory of the AmusementPark. 

k. buyMerchandise(String id) removes a Merchandise object 

from the list of merchandise of the AmusementPark. If the id does not 

match any Merchandise object in the list, an exception is thrown. 

l. buyTicket(String id) removes a Ticket object from the list of 

ticket items of the AmusementPark. If the id does not match any 

Ticket object in the list, an exception is thrown. 

 
4) Design a tester class called AmusementParkTester. The tester class has a 

main() method and tests the functionality of the class AmusementPark as 

follows:  
a. Create AmusementPark and name it "Walden Amusement Park". 

b. Create a minimum of three Ticket objects and add them to the 

bookstore. 



© 2014 Laureate Education, Inc.      Page 5 of 5 

c. Create Apparel objects, at least two of each category, and add them 

to the AmusementPark. 

d. Set up a loop to: 
i. Display a short menu that allows a user to perform different 

actions in the gift shop such as looking up tickets or 
merchandise or purchasing items. Use all of the accessor 

methods in the AmusementPark to access specific items. Use 

the given methods to make purchases. 
ii. Prompt the user for a specific action.  
iii. Depending on the specific action prompt the user for additional 

input such as the id of a ticket or merchandise category, etc. 
You might want to use static methods in main() to handle each 

menu item separately.  
iv. Perform the action and display results such as the list of 

merchandise that the user has requested. Use the toString() 

method to display AmusementPark items on the screen. 

v. Prompt the user for continued access to the AmusementPark 

or to end the program. 
 
Your program should handle input errors gracefully. For example, if a particular 
ticket is searched and not found, the program should display a message such as 
"Selected ticket not found." Feel free to experiment with the tester program in 
order to develop a more useful program.  
 
Implementation Notes: 

1) All accessor methods in AmusementPark must create a new ArrayList 

to copy objects into the new list. This requires loops to access objects 
from the corresponding instance fields and adding them to the new 
ArrayList. 

2)  Proper error handling is essential for this project.  

3) Javadoc must be used to document AmusementPark, Ticket, and 

Merchandise. 

  
Submission Requirements: 

1. Your project submission should have four files for this assignment:  

a. Ticket.java - The Ticket class, 

b. Merchandise.java - The Merchandise class, 

c. AmusementPark.java - The AmusementPark class, 

d. AmusementParkTester.java - A driver program for testing your 
AmusementPark class.  

2. Remember to compile and run your program one last time before you 
submit it  


